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ABSTRACT

Blum's medial axis transformation (MAT) for binary pictures
yields medial axis points that lie midway between opposite
borders of a region, or along angle bisectors. This note dis-
cusses a generalization of the MAT in which a score is computed
for each point P of a grayscale picture based on the gradient
magnitudes at pairs of points that have P as their midpoint.
These scores are high at points that lie midway between pairs of
antiparallel edges, or along angle bisectors, so that they define
a MAT-like "skeleton", which we may call the GRADMAT. However,
this skeleton is rather sensitive to the presence of noise edges
or to irregularities in the region edges.
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1. Introduction

In the early 1960's Blum [1] introduced the "medial axis

transformation" (MAT) of a set S; this is basically the set of

centers and radii of the maximal disks that are contained in S,

or equivalently, the set of points of S whose distances to the

complement S are local maxima, together with these distances.

It is not hard to see that medial axis points tend to lie midway

between opposite borders of S, or along the bisectors of angles

formed by the borders. Thus these points constitute a kind of

"skeleton" of S. For an introduction to the MAT, see [2],

Section 9.2.3.

Blum's MAT is defined for a picture only after the picture

has been segmented into S and S. Several generalizations of the

MAT to grayscale pictures have been suggested. We can define

the gray-weighted length of a path as proportional to the sum of

the gray levels at the points of the path; the gray-weighted

distance between two points can then be defined as the lowest

gray-weighted length of a path between them, and the gray-weighted

MAT (GMAT) of a picture can be defined as the set of points whose

gray-weighted distances to the set of O's in the picture are local

maxima, together with these distances [3). Note that this defi-

nition still requires segmentation of the picture, since it

treats O's as "background" and regions of non-0 values as objects.

Another generalization is based on finding maximal homogeneous

disks in the given picture; the set of centers, radii, and



average gray levels of these disks defines a generalized MAT,

called the SPAN ("Spatial Piecewise Approximation by Neighbor-

hoods"), since this information can be used to generate appro-

ximations to the picture [4].

This note discusses a generalization of the MAT in which a

score is computed for each point P of the picture based on the

gradient magnitudes at pairs of points that have P as their mid-

point. These scores are high at points that lie midway between

pairs of antiparallel edges, or along angle bisectors, so that

they define a MAT-like "skeleton", which we may call the GRADMAT.

However, this skeleton is rather sensitive to the presence of

noise edges or to irregularities in the region edges.
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2. The GRADMAT

The basic idea of the GRADMAT is to compute a score for

every P based on the gradient magnitudes at all pairs of points

that have P as their midpoint. Evidently, this score will be

very high at the center of a circle (or region that has a

high degree of central symmetry); and it will also be high

along the midline of a parallel-sided strip. There will be

weaker responses at points that lie on local axes of symmetry,

e.g., on angle bisectors, since such points are midway between

at least one pair of edges.

These examples show that the GRADMAT is in many ways analo-

gous to the MAT. However, it should be realized that the analogy

is only partial. To see this, consider the GRADMAT of a horizon-

tal rectangle, shown in Figure la (the algorithm used to compute

this GRADAT will be described later). The MAT of this rectangle

consists of parts of the four angle bisectors and horizontal

axis, as shown schematically in Figure lb; the rest of the hori-

zontal axis, and the vertical axes, do not belong to the MAT,

since they are not centers of maximal neighborhoods. The GRADMAT,

on the other hand, does give high values to the entire horizontal

axis as well as the vertical axis (though these values become

lower near the ends of the axes; see Figure la), since these

axes are symmetrically located between the two pairs of sides of

the rectangle. In this sense the GRADMAT more closely resembles
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Blum's more recent idea of a multilevel MAT (5]. (In terms of

Blum's "grassfire" metaphor, the higher levels of the MAT are

generated by wavefronts that continue past one another after

they collide, rather than "quenching" each other.)

To define the GRADMAT more precisely, we must specify just

how the pairs of gradient magnitudes at positions symmetric

with respect to P contribute to the score at P. The following

points should be made in this connection:

a) Nonmaximum suppression in the gradient directions should

be applied to the gradient magnitudes; in other words, for any

point P, if one of P's neighbors in the direction of the gradient

at P has a higher gradient magnitude than P does, P's gradient

magnitude should be set to zero. If we do not thin the edge

responses in the picture in this way, the GRADMAT values obtained

will also be thick; in fact, if P is nearly halfway between two

edges, nonmaximal responses from one or both edges will pair up

to give P a relatively high score.

b) If two edges are an even distance apart (measured in

pixel units), no point can be exactly midway between them. Thus

if we thinned the edges so that they became one point thick,

we would have to weaken the definition of "midway" to allow

distances that differ by 1. Instead, we used a modified method

of nonmaximum suppression that produces edges two points thick;
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namely, the gradient magnitude at P is set to zero if a neighbor

at distance 2 in the gradient direction has greater magnitude,

but the magnitudes at the immediate neighbors are ignored. It

can be verified that this yields edges two points thick except

when there are exact ties in magnitude. Note that if two such

edges are an odd distance apart, they give rise to a three-point

thick GRADMAT, while if they are an even distance apart, the

GRADMAT will be two points thick.

c) When P is midway between two edges, their contribution

to P's score should be proportional to the minimum or product

of their gradient magnitudes rather than to, e.g., their sum or

average. In particular, P gets no score unless it is midway

between two edge maxima, since the maxima are the only points

at which nonzero gradient magnitudes remain. If we used the

average, any strong edge would make a half-strength contribution

to the score of every point even when there is no edge symmetri-

cally located on the opposite side of the point, or when there

is only a weak noise edge there.

d) An edge at point Q, say, should, contribute to the score

at P only if the gradient direction at Q is roughly aligned

with the direction from P to Q, so that the edge runs roughly

perpendicular to the PQ direction. If we did not require this,

we would obtain high GRADMAT values at points P that lie on

straight edges, since such points have many pairs of edge points

on both sides of them; but the edges at these points are collinear



with the direction from P, rather than perpendicular to it.

One could reduce the GRADMAT values at points lying on edges

by scaling the value at P in inverse proportion to the gradient

magnitude at P; this will be illustrated in the next section.

However, this would not prevent high GRADMAT values from arising

at points that are collinear with a straight edge, whenever

another edge lies somewhere on the other side of the point.

Thus requiring the gradient direction at Q to be (say) within

+450 of the direction PQ seems to be the best solution.

e) We should also require the pair of edges on opposite

sides of P to face in opposite directions, i.e., P should be

on the dark side or the light side of both of them. This is

analogous to constructing the MAT of S and the MAT of S, in

the binary-valued case. In the examples in the next section,

we have computed GRADMAT scores only for pairs of edges such

that P is on the dark side of both; this is analogous to con-

structing the MAT of S (the "endoskeleton") but not that of

(the "exoskeleton" of S).

f) Even with these restrictions, it does not seem possible

to prevent high GRADMAT values from being generated by edges

that belong to two different boundaries. For example, if there

are two dark objects, pairs of edges on the far sides of the ob-

jects will produce high GRADMAT values midway between these far

sides, as illustrated in Figure 2a. Worse yet, if one dark
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object surrounds another, i.e. if a dark object has a darker

part, as in Figure 2b, high GRADMAT values will be produced by

pairing off, e.g., the left side of the outer object with the

right side of the inner one, and vice versa. We cannot elimi-

nate these cases by allowing only the pair of edges closest to

P in a given direction to contribute to P's value, sir' e in a

noisy picture this will often be a pair of noise edges. A some-

what more effective idea is to weight each edge's contribution

according to its closeness to P; we could then allow only the

edge in a given direction that makes the strongest contribution.

If the objects all have the same contrast, this method rejects

pairs of edges that do not belong to the same object boundary.

However, if they have different contrasts, the results are

harder to predict; close pairs of weak edges and more distant

pairs of strong edges would compete, and the GRADMAT could

change drastically if the relative strengths of these edges

changed slightly, which is intuitively undesirable.
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3. Experiments

In the following examples of GRADMATs, the Sobel edge

operator was used to estimate the gradient magnitude and

direction at each point, and nonmaxima of the gradient magni-

tude in the gradient direction were suppressed, as described

in Section 2a-b. All gradient magnitudes were scaled relative

to the strongest one in the picture; thus the scaled magnitudes

are all in the range [0,1].

Contributions to the score of each point P were computed

for all pairs of edge maxima on opposite sides of P at distance

up to 25 pixels. In other words, if P = (i,j), all pairs

(i+, j+$), (i-s, j-$) were examined for which YrazI6 S 25.

The results were sorted by direction (i.e., by tan-i,'), to

facilitate applying the direction criteria of Section 2d-e.

Figure 3 shows an airplane silhouette (a) and its gradient

magnitudes (b). Figure 3c shows the resulting GRADMAT values,

displayed as gray levels, scaled so the maximum score in the

picture corresponds to black. In computing these values, the

contribution of each pair of symmetric edge points is propor-

tional to the product (s the sum) of the two gradient magnitudes,

and an edge point at Q contributes to the score at P when P is

on the dark side of Q and the gradient direction at Q is within

+450 of the direction PQ. When this last condition is relaxed,

high values are obtained nearly everywhere, as we see from

Figure 3d. In these examples, the values are weighted in

-Wi



inverse proportion to distance from P. Figure 3e shows results

when no distance weighting is used; it is very similar to Figure

3c. Figure 4(a-e) shows analogous results for a much noisier

picture, an infrared image of a tank. The last result (4e)

is skeleton-like; in (4c) the skeleton is weakened by the in-

verse distance weighting.

I
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4. Discussion and concluding remarks

Blum [5] has suggested that the MAT can be generalized

to grayscale pictures by considering an expanding ring centered

at every point P, and detecting when the ring hits edges. It

seems likely that this would often yield confusing results;

when the ring gets large, many different patterns of edges

around the ring can give rise to the same total "score" at P,

particularly if edges do not all have the same strength. In our

approach, each pair of points symmetric with respect to P is con-

sidered individually; in effect, we are breaking up the ring

into pairs of diametrically opposite points. As we have seen,

even this more refined analysis of the edges surrounding P still

yields noisy results.

The purpose of this paper was to define a plausible extension

of the MAT to grayscale pictures. We have found, however, that

the resulting GRADMAT is quite sensitive to noise; it gives

skeleton-like results only in cases where the edges are very

clean. In'such cases, it would probably be safe to threshold

the edges and use the ordinary MAT. The GRADMAT has the concep-

tual advantage of being defined, in principle, for unsegmented

pictures; but it appears to be too sensitive to noise to be of

practical use in most situations.
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Figure 1. (a) GRADMAT of a rectangle; (b) Sketch of MAT
of a rectangle.



(a) (b)

Figure 2. Sketches of GRADMAT points generated by (a) the
far sides of two adjacent objects; (b) one object
inside another. The GRADMATS of the objects
themselves are not shown.

Fig. 3a-d

Fig. 3e

Fig. 4a-d

Fig. 4e

Figure 3. (a) Airplane silhouette. (b) Gradient magnitudes.
(c) GRADMAT values. (d) Result of not requiring the
gradient direction at a point to be within +450 of
the direction to the point. (e) Result of not
weighting the scores in inverse proportion to distance.

Figure 4. Analogous results for an infrared image of a tank.
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